# 习题 1.5

  • a logX<X\log X<X 对所有 X>0X>0 成立

    证:logX<X\log X<XlogX<log2X\log X<\log 2^XX<2XX<2^X
    因为X>0X>0 时始终有X<2XX<2^X,证毕

  • b log(A)B=BlogA\log (A)^B=B\log A

    证:令A=2XA=2^X,由对数定义的X=logAX=\log A
    左边:log(A)B=XB\log (A)^B=XB
    右边:BlogA=XBB\log A=XB
    证毕

# 习题 1.9

  • a i=1N2Fi=FN2\sum_{i=1}^{N-2}F_i = F_N-2

    i=1kFi=Fk+22\sum_{i=1}^{k}F_i = F_{k+2}-2
    N=1N=1 时,等式成立,假设等式成立当1<N<k+11<N<k+1
    i=1k+1Fi=i=1kFi+Fk+1=Fk+22+Fk+1=Fk+32\sum_{i=1}^{k+1}F_i = \sum_{i=1}^{k}F_i+F_{k+1}=F_{k+2}-2+F_{k+1}=F_{k+3}-2
    对于N=K+1N=K+1 等式依旧成立,证毕

  • b FN<ϕNF_N<\phi ^N, 其中ϕN=(1+5)/2\phi ^N=(1+\sqrt{5})/2

    当 N=1 时,F1<(1+5)/2F_1<(1+\sqrt{5})/2,当 N=2 时,F2<((1+5)/2)2F_2<((1+\sqrt{5})/2)^2,满足基准情况
    假设等式成立,当N=k+1N=k+1 时,Fk+1=Fk+Fk1F_{k+1}=F_{k}+F_{k-1} > Fk+1<(1+52)k+(1+52)k1<(21+5)(1+52)k+1+(21+5)2(1+52)k+1<(6+251+5)2(1+52)k+1<(1+52)k+1F_{k+1}<(\frac{1+\sqrt{5}}{2})^k+(\frac{1+\sqrt{5}}{2})^{k-1}<(\frac{2}{1+\sqrt{5}} )(\frac{1+\sqrt{5}}{2})^{k+1}+(\frac{2}{1+\sqrt{5}})^2(\frac{1+\sqrt{5}}{2})^{k+1}<(\frac{6+2\sqrt{5}}{1+\sqrt{5}})^2(\frac{1+\sqrt{5}}{2})^{k+1}<(\frac{1+\sqrt{5}}{2})^{k+1}
    所以当N=k+1N=k+1 时等式成立,证毕

  • c 给出斐波那契数封闭形式的准确表达式

    f(x)=x1xx2f(x)=\frac{x}{1-x-x^2},即生成函数

# 习题 1.10

  • a i=1N(2i1)=N2\sum_{i=1}^{N}(2i-1)=N^2

    对于N=1N=1N=2N=2 等式成立
    假设等式成立,当N=k+1N=k+1
    i=1k+1(2i1)=i=1k(2i1)+(2(k+1)1)=k2+(2(k+1)1)=(k+1)2\sum_{i=1}^{k+1}(2i-1)=\sum_{i=1}^{k}(2i-1)+(2(k+1)-1)=k^2+(2(k+1)-1)=(k+1)^2
    所以当N=k+1N=k+1 时等式成立,证毕

  • b i=1Ni3=(i=1Ni)2\sum_{i=1}^{N}i^3=(\sum_{i=1}^{N}i)^2

    对于N=1N=1N=2N=2 等式成立
    假设等式成立,当N=k+1N=k+1
    i=1k+1i3=i=1ki3+(k+1)3=(k(1+k))2+(k+1)3=(k+1)2(k+2)22=((k+1)(1+(k+1))2)2\sum_{i=1}^{k+1}i^3=\sum_{i=1}^{k}i^3+(k+1)^3=(\frac{k}{(1+k)})^2+(k+1)^3=\frac{(k+1)^2(k+2)^2}{2}=(\frac{(k+1)(1+(k+1))}{2})^2
    所以当N=k+1N=k+1 时等式成立,证毕